$$
(y \operatorname{cob}) \text { a } x+y \neq 0 \text { ad } f(x+y)=f(x)+f(y) \text {. An0 cadbcime } x+1
$$

kaj $\quad f\left(x^{2}\right)=x f(x)$

$$
\begin{aligned}
& f\left(x^{2}+2 x+1\right)=(x+1) f(x+1)=x f(x+1), f(x+1)=x f(x)+x f(1)+f(x)+f(1)= \\
= & \left.f\left(x^{2}\right)+x f(1)+f(x)+f(1)\right),
\end{aligned}
$$

Ta goubave $f\left(x^{2}\right)+f(x)+f(x) \quad t f(x)=f\left(x^{\prime} \mid x+x f(x)+f(x)+f(x)\right.$, w.e.
$f(x)=x f(h)=x$, a pewenuja ce $f(x)=0$ u $f(x)=x$ c

1. $\alpha, \beta, C \in\left(1 L^{+} \quad \theta B C+a r=600 \mathrm{C}\right.$

$$
\begin{aligned}
& a 18+c \geq 1+\frac{1}{6}\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right) \int 6 a b c \\
& \Leftrightarrow \sigma 08 c(a) b+t) \geq 64 B c+a B^{\prime} b^{\prime} c+12^{2} a \\
& \Leftrightarrow\left[0816(+a c)(a b \mu)=698 c+a^{2} b 1 b^{7}+t^{2} a\right. \\
& \Leftrightarrow 0^{2} b b^{2} c+c^{2} a+a b^{2} b c^{2}+c a^{2}+308 c=6 a b c+a^{2} b b^{2} c+c^{2} a
\end{aligned}
$$

$$
\begin{aligned}
& 3 \sqrt{a^{2} b^{3} c^{3}}=3 a 8 c . \text { Prbenctabo } 8 a \times 14 \quad 3 a \quad a=8=c=\frac{1}{2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \quad f \cdot \mid h \rightarrow 1(R \quad f((x+y))=(f(x)+f(y))(x+y) \\
& 3 a x=-y, \quad f(0)=0,3 d \quad y=0, f\left(x^{2}\right)=x f(x) . \quad 3 a \quad x=-y \\
& \theta=f(0)=\left(f(y)+f(-y) \theta=0 \text {, Ta Heha } x+y \neq 0 \text {. Oy } f\left(x^{2}\right)=x f(x)\right. \\
& \text { aho } 3 a x \text { (} \pi a b q u \operatorname{la} x+y, \quad f\left((x+y)^{2}\right)=(x+y) f(x+y)=(f(x)+f(y))(x+y)
\end{aligned}
$$

2. Topagu cumetuparrocta, 5.5.O.c c>0きa. . .he postregare 2 ayrau:

I $18 \&(a, b, c)=1$. Ano $H 3 f(a, b)=d \Rightarrow d a^{2} b\left(a^{3} b^{3}+c^{3} \Rightarrow d / c\right.$, uonapogahbyga co $H 3 \perp(a, b, c)=1$. 3 ronu a $\quad H 3 A(a, b)=H 3 D(b, 1)=H 3 D(c a)=1, a a$ argu geha $a^{2} b^{2} \mid a^{3} b^{3}+c^{3}$. Hotaw $Q b^{2} c^{2} \leq a^{3}+b^{3}+c^{3} \leq 3 c^{3} \Rightarrow c \frac{08 B^{2}}{3}$ (ceid og of ${ }^{2}\left(a^{3}, b^{3}+c^{3}\right.$ ч $n 3 f\left(a^{1}, b^{2}, c^{1}\right)=1$, whane $C^{2} 1 a^{3}, b^{3}$, aa $c^{2} \leq a^{2}, b^{3} \leq 2 b^{3}$ Og gpyta capaha $c^{2} \leq \frac{a^{2} b^{2}}{3}$, 4a $188^{\beta} \geq a^{4} b^{t} \geq a^{5}$, тa мфа $a=1$. Зa $b>1, \quad 6 \geq b+1$, иad $2 c^{3}>c^{3} b^{3}+1=a^{3}+b^{3}+c^{3} \geq b 2 c^{2}$, og . th4a $c>\frac{b^{2}}{2}$, HO $a+b^{3}=a^{3} b^{3}>x^{2} 2\left(\left.\frac{b^{2}}{2}\right|^{2}\right.$, иa $b \leq 4$. (eta rerko re goduba gena $\left.b=2\right)$ u $c=3$ tho $b=1$, jano a $c=1$. 3naru $3 a \operatorname{Ha\rho }(a, b, c)=1$ pemenuja ce $(0,6, C)=(1,1,1)$ 幺 $(1,2,3)$
I. Hena H3 $\perp(a, b, k) a d>1$. Nowaw $a=d a_{1}, b=d b, c=d c_{1}$, to ynobutie ce armbubannanu co $d^{2} a_{1}^{2} \cdot d b_{1} \mid d^{3} a_{1}^{3}+d^{3} b_{1}^{3}+d^{3} c_{1}^{3} \ldots .$. (anaorno u gp.aer) lnc $a_{1}^{2} b_{1}\left(a_{1}^{3}+b_{1}^{3}+c_{1}{ }^{3}\right.$. Jacho $n^{3} \perp\left(a_{1}, b_{1}, c_{1}\right)=1$. (eia goongme ugenatren ayroj nano bo I , to nolerho, pluehuja xa 3 ugorataa ce $(a, b, c)=(x, x, x)$ 4 $(x, 2 x, 3 x)$

Hera $A H \cap B C=\{D\}, \triangle H \cap \cap=\left\{D^{\prime}\right\}, B C \cap D P=\{L\}, L M \cap P V=\{V\}$ a $A N \cap k=\{U\} . O_{g}$ aetublocian na AUCD ч $P C M N$ सPUA $=$ $=480-\varangle P R A=\$ P N M, \quad u_{a} \quad A \cup \| M N . \mathrm{Og}_{g} \quad \overline{H D}=\overline{D D^{\prime}}$ u $\overline{V N}=\overline{N D}$
 =fv4n', oa AUIVH\|IMN. VN=NR u HVIIMN va MN e cpeatur
 (eta jacko SH \|PM, PM aMS ce aperonobyedañ; $p|P\rangle \Rightarrow p$ Munsba Hus H, wno e duncha $\overline{\text { morka }}$ keja he Ba8un og uscopon ni P.
4.

ycribume re encubaeninna
co.

$$
\begin{aligned}
& \frac{\overline{A B}}{A S}-1=\frac{\mathbb{C D}}{C N} \\
& \frac{B}{A B}=\frac{B M}{C N} \\
& \frac{\overline{A C}}{\overline{A T}}-1=\frac{\bar{N}}{\overline{B M}}
\end{aligned}
$$

$\frac{B S}{A S}=\left.\frac{\frac{A T}{\bar{T}}}{\overline{A T}}\right|^{\text {tr }}$ Hena $P Q$ u BC ce cerañ bo L. he yolanever $\left.\frac{A B}{\overline{T s}}=\frac{\overline{A C}}{T} \right\rvert\,$ geno S, t u L ce koruheapku. Dobono e ga uno. $\overline{A_{S}}{ }^{-}$Th howere sha:

$$
\begin{aligned}
& \frac{A B}{A S} \cdot \frac{\overline{S T}}{T L} \cdot \frac{\overline{C B}}{\overline{C B}}=1 \quad 4 \pi 4 \frac{\overline{A C}}{\bar{T}} \cdot \frac{\frac{S T}{T L}}{\frac{L C}{C B}}=1 \Leftrightarrow \frac{\overline{A C}}{\overline{B C}} \cdot \frac{S T}{C T} \cdot \frac{\overline{T C}}{T L}=1
\end{aligned}
$$

ua $\frac{\sin \beta}{\sin \alpha} \cdot \frac{\sin y}{\sin x} \cdot \frac{\sin (x+\alpha)}{\sin \gamma}=1 \quad \sin \gamma-\sin \alpha \alpha \beta$, aa anpedaga gotacap

$$
\sin \beta \cdot \sin y \cdot \sin (x+y)=\sin \alpha \cdot \sin x \cdot \sin (\alpha+\beta)
$$

Og Menerals $3 a$ ABC ${ }^{\text {n }}$ BL, apedd ga goumene rena

$$
\frac{\sqrt{2} D}{C^{2}}=\frac{\sqrt{B M}^{2}}{C^{2}} 1 \frac{\sqrt{D^{2} \cdot}}{L C}=\frac{B^{2}}{a}
$$

